
Rappèl
L’équation de Schrödinger, qui régit la forme de la fonction d’onde , est un axiome de la théorie. Pour
une particule de masse m, soumise à un potentiel U(x), elle est donnée par

Il s’agit de l’équation de Schrödinger indépendante du temps. Elle décrit les «états stationnaires» d’un
système. Il faut interpréter les états stationnaires par analogie avec les modes d’oscillation d’un système
harmonique en physique classique: la forme de la fonction d’onde reste la même dans le temps.

La quantité E est l’énergie totale du système. En général, pas toutes les valeurs de E sont possibles. Les
valeurs possibles sont déterminées par les conditions au bord, auxquelles la fonction d’onde doit satisfaire:

La fonction d’onde doit être continue et sa première dérivée doit être également continue. En plus, la
fonction d’onde doit être normée.

Les premiers exemples de solutions de l’équation de Schrödinger étaient la particule libre – pour laquelle on
retrouve l’onde plaine de de Broglie – et le puits de potentiel avec barrières impénétrables.
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L’équation de Schrödinger: L’impulsion

On voit apparaître dans l’équation de Schrödinger l’énergie totale E et l’énergie potentielle U. On sait que la
relation E=K+U doit valoir, où K est l’énergie cinétique.

On peut écrire l’équation comme où est un «opérateur» qui agit sur la fonction d’onde.

Cet opérateur est dit «Hamiltonien» et il est exprimé comme

Intuitivement on pourrait s’attendre H=E. Pour cela il faut que la partie avec la dérivée soit égale à l’énergie
cinétique K:

Ceci est possible si on pose



L’équation de Schrödinger: L’impulsion
En Physique Quantique, les quantités physiques sont dites «observables» (car elles peuvent être mesurées) et
sont représentées par des «opérateurs» agissant sur la fonction d’onde. Pour l’impulsion:

On indique les opérateurs avec un «chapeau» pour les distinguer des quantités numériques.

L’opérateur agit sur la fonction d’onde comme

La position x de la particule, étant une quantité observable, est aussi décrite par un opérateur

où f(x) est la fonction obtenue en multipliant la variable x fois la fonction



La relation de commutation de Heisenberg
Les opérateurs de la position et de l’impulsion sont caractérisés par une relation très importante

C’est la relation de commutation de Heisenberg.

A différence du produit entre nombres, qui obéit à la propriété commutative, l’application successive de deux
opérateurs donne en général un résultat différent selon l’ordre d’application des opérateurs.

On peut démontrer la relation ci-dessus tout simplement, en utilisant la règle pour la dérivée du produit



La relation de commutation de Heisenberg
La relation de commutation de Heisenberg est un résultat fondamental de la Physique Quantique.

On peut montrer qu’elle est à l’origine du principe d’incertitude de Heisenberg, de la quantification de
l’énergie, et de l’incertitude dans le processus de mesure.



La particule dans un puits de hauteur finie
Un système plus proche de la réalité est celui d’une particule dans un puits de potentiel avec barrières de
hauteur finie

Le potentiel est défini comme

On indique les trois régions de l’espace avec les symboles I, II, et III.



Heterostructures à semi-conducteur
Un puits carré pour les électrons peut être couramment réalisé par
hétero-épitaxie: une technique qui permet de déposer des couches
atomiques de matériaux différents avec haute précision.

Inventés dans les années 70, les High Electron Mobility Transistors
(HEMT), basés sur ce principe, sont utilisés partout en électronique
et permettent à nos smartphones de fonctionner à haute
fréquence et basse puissance.



La particule dans un puits de hauteur finie
On s’intéresse aux états avec valeur propre de l’énergie E<U.

Pour une particule décrite par les lois de la physique classique, si E<U la
particule ne peut accéder qu’à la région II. Pour qu’elle accède aux régions
I et III, il faudrait que son énergie totale E soit au moins égale à l’énergie
potentielle U.

En Physique Quantique on verra que, même avec E<U, la particule a une
probabilité finie de se trouver dans les régions I et III.

Dans la région II, la solution de l’équation de Schrödinger est la même que
dans le cas avec barrière infinie

Cependant, maintenant les conditions au bord ne seront pas les mêmes.

Pour déterminer les nouvelles conditions au bord, il faut d’abord résoudre
l’équation dans les régions I et III



La particule dans un puits de hauteur finie
Dans les régions I et III l’équation de Schrödinger est

C’est une équation de 2ème ordre à coefficients constants. La solution est

La première condition à imposer est celle sur la norme. Si on veut que la
fonction d’onde soit normée, elle ne peut pas diverger exponentiellement
pour x qui tend vers +∞ ou - ∞. Donc, il faut éliminer les deux termes
divergents, ce qui revient à poser B=0 dans la région I et A=0 dans la région
III. On a



La particule dans un puits de hauteur finie
On remarque que nous avons maintenant encore cinq quantités à
déterminer: A, B, C, F, et G.

A la position x=0, les conditions au bord imposent que la fonction d’onde
et sa dérivée doivent être continues

De même, à la position x=L

La 5ème condition est obtenue en imposant que la norme soit =1. Ces 5
conditions permettent de calculer les 5 inconnues.



La particule dans un puits de hauteur finie
Pour le cas E<U que nous sommes en train d’étudier, les cinq conditions ne
peuvent être remplies que pour des valeurs discrètes de l’énergie E.

C’est un résultat attendu, car pour des valeurs très grandes de U, on
aimerait que les solutions s’approchent de celles pour le puits avec
barrière infinie.

Les fonctions d’onde des premiers états propres, ainsi que les densités de
probabilité associées sont:

La densité de probabilité est en effet finie dans les régions I et III, et elle
décroit exponentiellement avec la distance des bords du puits.



L’effet tunnel à travers une barrière
La possibilité pour une particule de pénétrer des régions qui seraient
interdites par les lois de la physique classique, est dite «effet tunnel».

L’effet tunnel est spécialement évident pour une barrière de potentiel.

Selon la physique classique, si on envoie une particule de la gauche (région
I dans la figure) vers la barrière, avec une énergie cinétique E<U, la
particule ne pourra jamais passer dans les régions II et III.

Selon la Physique Quantique, la fonction d’onde et la densité de
probabilité prendront en général des valeurs finies dans les régions II et III.

En particulier dans la région II, pour E<U, on aura une solution di type

Le rapport entre les densités de probabilité aux deux bords de la région II est parfois dit le coefficient de
transmission, et vaut

Dans la limite de L très grand, la particule n’est pas «transmise» et on retrouve le résultat classique.



Effet tunnel et direction de propagation
Le même effet se produit si la particule est «envoyée» de droite vers la gauche.

Dans le cas de la particule libre on a avec . Ce sont deux solutions avec la
même énergie et deux directions de propagation opposées.

La même chose arrive dans le cas de la barrière de potentiel. On a dans ce cas deux solutions de même
énergie. Pour chaque solution, la particule provient d’une région et est transmise dans la région opposée.



Equation de Schrödinger dép. du temps
Nous allons avoir un aperçu de l’équation de Schrödinger dépendante du temps.

Nous avons vu que l’équation de Schrödinger indépendante du temps décrit les états propres du système. La
densité de probabilité pour ces états ne dépend pas du temps. Ce sont des états stationnaires.

Plus en général, l’état d’un système dépend du temps, car la théorie doit être en mesure de décrire les
objets en mouvement.

La fonction d’onde d’une particule donc dépend en général de la position x et du temps t.

Pour une particule en une dimension, soumise à un potentiel U(x), L’équation de Schrödinger dépendante du
temps est

On remarque que la partie de droite est la même que dans l’équation indépendante du temps.

On remarque également la présence d’un «i» qui est l’unité des nombres imaginaires. C’est pourquoi la
fonction d’onde en Physique Quantique doit nécessairement prendre des valeurs complexes.



Comment un état propre évolue dans le temps
Les solutions de l’équation de Schrödinger stationnaire sont aussi solutions de l’équation dépendante du
temps. Considérons un état stationnaire, solution de l’équation:

On peut remplacer cet état dans l’équation de Schrödinger dépendante du temps. On obtient:

C’est une équation linéaire à coefficients constants. Imposons une condition initiale:

La solution est:

On voit pourquoi on appelle ces solutions «stationnaires». Elles ne dépendent du temps que par une phase
complexe de module unitaire. La densité de probabilité correspondante ne dépend pas du temps:



Paquet d’onde sur une barrière de potentiel
Observons l’évolution dans le temps d’un paquet d’onde, régi par l’équation de Schrödinger dépendante du
temps, qui est envoyé contre une barrière de potentiel. L’énergie moyenne du paquet est choisie égale au
80% de la hauteur de la barrière de potentiel.






Questions ouvertes
Comment on résout l’équation de Schrödinger pour d’autres modèles physiques? Par exemple pour
l’oscillateur harmonique, ou pour les électrons autour des atomes?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?

Avec une théorie quantique à plusieurs particules en interaction, arrive-t-on à expliquer la structure des
atomes et de la matière en général?
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