Rappe

’équation de Schrddinger, qui régit la forme de la fonction d’'onde (), est un axiome de la théorie. Pour
une particule de masse m, soumise a un potentiel U(x), elle est donnée par

R d(x) :
—o e 4 U(2)Y (@) = Bu(a)

Il sagit de I'équation de Schrodinger indépendante du temps. Elle décrit les «états stationnaires» d’un
systeme. Il faut interpréter les états stationnaires par analogie avec les modes d’oscillation d’un systeme
harmonique en physique classique: la forme de la fonction d’'onde reste la méme dans le temps.

La quantité E est I'énergie totale du systeme. En général, pas toutes les valeurs de E sont possibles. Les
valeurs possibles sont déterminées par les conditions au bord, auxquelles la fonction d’onde doit satisfaire:

La fonction d’'onde doit étre continue et sa premiere dérivée doit étre également continue. En plus, la
fonction d’onde doit étre normée.

Les premiers exemples de solutions de I'équation de Schrodinger étaient la particule libre — pour lagquelle on
retrouve 'onde plaine de de Broglie — et le puits de potentiel avec barrieres impénétrables.



Cours 07/

L'impulsion

La relation de commutation de Heisenberg
Le puits de potentiel avec barrieres finies
L'effet tunnel



L'équation de Schrodinger: L'impulsion

P a2 () :
—o 2 + U(2) () = Bu(a)

On voit apparaitre dans I'équation de Schrodinger I'énergie totale E et I'énergie potentielle U. On sait que la
relation E=K+U doit valoir, ou K est I'énergie cinétique.

On peut écrire I'équation comme Flw(a:) = EY(x) ou H est un «opérateur» qui agit sur la fonction d’onde.

Cet opérateur est dit «Hamiltonien» et il est exprimé comme

~ h? d?
H = - 5 + U(x)
2m dx
Intuitivement on pourrait s'attendre H=E. Pour cela il faut que la partie avec la dérivée soit égale a I'énergie
cinétique K:
h2 d2 p2
— 5 = K = Z——
2m dx 2m
Ceci est possible si on pose d
p = —th—

dx



L'équation de Schrodinger: L'impulsion

En Physique Quantique, les quantités physiques sont dites «observables» (car elles peuvent étre mesurées) et
sont représentées par des «opérateurs» agissant sur la fonction d’'onde. Pour I'impulsion:

d
e e
{atrr dx

On indique les opérateurs avec un «chapeau» pour les distinguer des quantités numérigues.

'opérateur p agit sur la fonction d’'onde comme
pY(x) = —th———
dx
La position x de la particule, étant une quantité observable, est aussi décrite par un opérateur

() = f(z)

ou f(x) est la fonction obtenue en multipliant la variable x fois la fonction ()



La relation de commutation de Heisenberg

Les opérateurs de la position et de I'impulsion sont caractérisés par une relation tres importante
p — p2 = ih

C’est la relation de commutation de Heisenberg.

A différence du produit entre nombres, qui obéit a la propriété commutative, I'application successive de deux
opérateurs donne en général un résultat différent selon I'ordre d’application des opérateurs.

On peut démontrer la relation ci-dessus tout simplement, en utilisant la regle pour |la dérivée du produit

WD 1 in e (w(a)

(2p — pr)Y(z) = —ihx

dx
L dv(x) dy ()
= —thx o +ih (w(x) + = )

— il (x)



La relation de commutation de Heisenberg

La relation de commutation de Heisenberg est un résultat fondamental de la Physique Quantique.

On peut montrer qu’elle est a l'origine du principe d’incertitude de Heisenberg, de la quantification de
I’énergie, et de I'incertitude dans le processus de mesure.



La particule dans un puits de hauteur finie

Un systeme plus proche de la réalité est celui d’'une particule dans un puits de potentiel avec barrieres de
hauteur finie

I IT I11

Le potentiel est défini comme

0 O<zxz<L
U(w)—{ U z<Qouzxz>1L

On indique les trois régions de I'espace avec les symboles |, Il, et lll.



Heterostructures a semi-conducteur

Un puits carré pour les électrons peut étre couramment réalisé par
hétero-épitaxie: une technique qui permet de déposer des couches
atomiques de matériaux différents avec haute précision.

Inventés dans les années 70, les High Electron Mobility Transistors
(HEMT), basés sur ce principe, sont utilisés partout en électronique
et permettent a nos smartphones de fonctionner a haute
fréquence et basse puissance.
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La particule dans un puits de hauteur finie

On s’intéresse aux états avec valeur propre de I’énergie E<U.

Pour une particule décrite par les lois de la physique classique, si E<U la
particule ne peut accéder qu’a la région Il. Pour qu’elle accede aux régions
| et Ill, il faudrait que son énergie totale E soit au moins égale a I'énergie
potentielle U.

En Physique Quantique on verra que, méme avec E<U, la particule a une
probabilité finie de se trouver dans les régions | et IlI.

Dans la région Il, la solution de I'équation de Schrodinger est la méme que
dans le cas avec barriére infinie

wII(x) . Fez’kw + Ge—z’kaz

Cependant, maintenant les conditions au bord ne seront pas les mémes.

Pour déterminer les nouvelles conditions au bord, il faut d’abord résoudre
I’équation dans les régions | et Il

IT IT1




La particule dans un puits de hauteur finie

Dans les régions | et Il 'équation de Schrodinger est

52 dzw( ) I II 11
xZ
— = (£ —U)yY(x u ,
2m dCCz ( )w( ) ____A_ ___________
7 . > N « . . L
C’est une éguation de 2®™¢ ordre a coefficients constants. La solution est 0 I
T
S X
V(z) = Ae®* 4+ Be™©* C = \/Qm([]; E)

La premiere condition a imposer est celle sur la norme. Si on veut que la
fonction d’'onde soit normée, elle ne peut pas diverger exponentiellement
pour x qui tend vers +o ou - o. Dong, il faut éliminer les deux termes
divergents, ce qui revient a poser B=0 dans la région | et A=0 dans la région

I1l. On a C
Yr(zr) = Ae™* pour x <0

Yrrr(xz) = Be” Y% pour = > L



La particule dans un puits de hauteur finie

On remarque que nous avons maintenant encore cing quantités a
déterminer: A, B, C, F, et G.

A la position x=0, les conditions au bord imposent que la fonction d’onde
et sa dérivée doivent étre continues

dir(x)

¥1(0) = ¥r1(0) . _ dn(z)

=0 dx =0
De méme, a la position x=L
dpri(x) dirrr(x)
L — L p—
wII( ) wIII( ) dr . dr -

La 5¢me condition est obtenue en imposant que la norme soit =1. Ces 5
conditions permettent de calculer les 5 inconnues.
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La particule dans un puits de hauteur finie

Pour le cas E<U que nous sommes en train d’étudier, les cing conditions ne A
peuvent étre remplies que pour des valeurs discrétes de I’énergie E. I 1 [
C’est un résultat attendu, car pour des valeurs tres grandes de U, on U
aimerait que les solutions s’approchent de celles pour le puits avec E
barriére infinie. T
Les fonctions d’onde des premiers états propres, ainsi que les densités de 0 I
probabilité associées sont:

T

La densité de probabilité est en effet finie dans les régions | et lll, et elle
décroit exponentiellement avec la distance des bords du puits.



'effet tunnel a travers une barriere

La possibilité pour une particule de pénétrer des régions qui seraient

interdites par les lois de la physique classique, est dite «effet tunnel».
L'effet tunnel est spécialement évident pour une barriere de potentiel.

Selon la physique classique, si on envoie une particule de la gauche (région
| dans la figure) vers la barriere, avec une énergie cinétique E<U, la
particule ne pourra jamais passer dans les régions Il et 1.

Selon la Physique Quantique, la fonction d'onde et la densité de
probabilité prendront en général des valeurs finies dans les régions Il et lIl.

En particulier dans la région I, pour E<U, on aura une solution di type
= 2m(U — E
rr(x) = Ae”” C = \/ (hz )

Le rapport entre les densités de probabilité aux deux bords de la région Il est parfois dit le coefficient de

transmission, et vaut
e o —

~ [Y(0)?

Dans la limite de L tres grand, la particule n’est pas «transmise» et on retrouve le résultat classique.




Effet tunnel et direction de propagation

Le méme effet se produit si la particule est «<envoyée» de droite vers la gauche.
Dans le cas de la particule libre ona ¥ (x) = eT* avec E = h2k2/2m . Ce sont deux solutions avec la
méme énergie et deux directions de propagation opposées.

La méme chose arrive dans le cas de la barriere de potentiel. On a dans ce cas deux solutions de méme
énergie. Pour chaque solution, la particule provient d’une région et est transmise dans la région opposée.
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Equation de Schrodinger dép. du temps

Nous allons avoir un apercu de I'équation de Schrodinger dépendante du temps.

Nous avons vu que |I'équation de Schrodinger indépendante du temps décrit les états propres du systeme. La
densité de probabilité pour ces états ne dépend pas du temps. Ce sont des états stationnaires.

Plus en général, I’état d’un systeme dépend du temps, car la théorie doit étre en mesure de décrire les
objets en mouvement.

La fonction d’onde d’une particule donc dépend en général de la position x et du temps t.

Pour une particule en une dimension, soumise a un potentiel U(x), Léquation de Schrédinger dépendante du
temps est

0V, 1) W 0%(, )

On remarque que la partie de droite est la méme que dans I'équation indépendante du temps.

On remarque également la présence d’un «i» qui est I'unité des nombres imaginaires. C’est pourquoi la
fonction d’onde en Physique Quantique doit nécessairement prendre des valeurs complexes.



Comment un état propre évolue dans le temps

Les solutions de |'équation de Schrodinger stationnaire sont aussi solutions de I'équation dépendante du
temps. Considérons un état stationnaire, solution de I'équation:

i 0%, (x,t
" 2m wag )+U($)¢n(l’»t) = Enthn(z,1)

On peut remplacer cet état dans I'équation de Schrédinger dépendante du temps. On obtient:

C’est une équation linéaire a coefficients constants. Imposons une condition initiale: wn (33, 0) — ¢n (37)

La solution est: Bt

Yn(x,t) = Yp(x)e " r

On voit pourquoi on appelle ces solutions «stationnaires». Elles ne dépendent du temps que par une phase
complexe de module unitaire. La densité de probabilité correspondante ne dépend pas du temps:

(2, 8)* = [n ()]’



Paguet d’'onde sur une barriere de potentiel

Observons |'évolution dans le temps d’un paquet d’onde, régi par I'équation de Schrodinger dépendante du
temps, qui est envoyé contre une barriere de potentiel. U'énergie moyenne du paquet est choisie égale au
80% de la hauteur de la barriere de potentiel.







Questions ouvertes

Comment on résout |'équation de Schrodinger pour d’autres modeles physiques? Par exemple pour
I'oscillateur harmonique, ou pour les électrons autour des atomes?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?

Avec une théorie quantique a plusieurs particules en interaction, arrive-t-on a expliquer la structure des
atomes et de la matiere en général?
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